Логотип РЖД Энциклопедия железных дорог - Реле и приборы релейного действия

Связь с администрацией сайта: contacts@cssrzd.ru
Новости и статьи     Справочная информация     Тарифное руководство #4     Медиа    
Распоряжения     Сайты о поездах и железной дороге     Лаборатория данных     Энциклопедия     Литература


Реле и приборы релейного действия

Принцип действия реле и их классификация

Наиболее распространенными элементами систем железнодорож­ной автоматики и телемеханики являются реле и приборы релей­ного действия, при помощи которых осуществляются процессы автоматического управления, регулирования и контроля движения поездов.

Основным отличием реле и приборов релейного действия от дру­гих элементов автоматики и телемеханики является скачкообраз­ное изменение выходной величины у при плавном изменении вход­ной величины х (рис. 3.1). При изменении входной величины от нуля до хср выходная величина у остается постоянной и равной нулю (или близкой к нулю). После достижения входной величиной значения хср (срабатывания) скачкообразно изменяется выходная величина от нуля до у1. При дальнейшем изменении входной вели­чины выходная величина не изменяется и остается равной у1. При уменьшении входной величины до хо (отпускания) выходная вели­чина скачкообразно уменьшается до нуля и остается неизменной.

Рис. 3.1. Характеристика реле

 В устройствах железнодорожной автоматики и телемеханики, как правило, применяют реле и приборы релейного действия, в которых входными и выходными являются электрические величины (ток и на­пряжение). Если скачкообразное изменение тока в выходной цепи достигается физическим размыканием цепи, то такой элемент назы­вают контактным реле, или просто реле. Если скачкообразное изменение тока в выходной цепи обусловливается изменением внут­реннего состояния элемента (внутреннего сопротивления, проводи­мости, индуктивности и т. п.) без физического размыкания цепи, то такой элемент называют прибором релейного действия, или бесконтактным реле.

 

Рис. 3.2. Схема электромагнитного реле

 

Основной частью реле (рис. 3.2) является электромагнит — наиболее простой преобразователь электрического сигнала в меха­ническое перемещение. Электромагнит состоит из обмотки 1 с сер­дечником 2, ярма 3 и подвижной части 4, называемой якорем. Якорь воздействует на исполнительный орган — контакты 5.

При прохожде­нии тока по обмотке возникает магнитный поток; магнитные силовые линии замыкаются через воздушный зазор, пронизывают якорь, который под действием электромагнитных сил притягивает­ся, замыкая контакты. Это явление называется срабатыванием (возбуждением) реле. При выключении тока якорь под действием силы тяжести (собственного веса) или сил реакции контактных пружин возвращается в исходное состояние, размыкая контакты. Это явление называется отпусканием (обесточиванием) реле.

Для условного обозначения состояний элементов автоматики и телемеханики, в том числе и реле, применяют двоичную систему счисления: возбужденное состояние реле обозначают символом 1, обесточенное — символом 0.

 

Контактные реле.  

До­стоинства: Контактные реле получили наибольшее распространение в экс­плуатируемых устройствах железнодорожной автоматики и теле­механики благодаря их простоте и надежности работы. К их до­стоинствам следует отнести:

Недостатки: контактные реле имеют относительно большие размеры и массу, небольшой срок службы, особенно при работе в импульсном режиме, недостаточное быстродействие, обусловленное наличием механических перемещений при работе реле.

Бесконтактные приборы Указанные недостатки в основном могут быть устранены применением бесконтактных реле, у которых отсутствуют подвижные трущиеся элементы. В связи с бурным развитием электроники бесконтактные приборы получают все более широкое внедрение. Бесконтактные приборы обладают большим быстродействием, имеют малые размеры и массу, менее подвержены воздействию вибрации, наблюдающейся при проследовании подвижного состава.

Вместе с тем бесконтактные приборы релейного действия имеют и существенные недостатки, которые связаны с трудностью построения бесконтактных элементов, отвечающих одному из основных требова­ний к устройствам СЦБ — исключению опасных положений при по­вреждении отдельных элементов схем. При использовании бескон­тактных реле возникает трудность одновременного коммутирования нескольких выходных цепей, гальванически не связанных друг с дру­гом. Указанные недостатки ограничивают область применения бес­контактных реле в устройствах железнодорожной автоматики и те­лемеханики, поэтому в ответственных исполнительных цепях, а также при необходимости коммутации нескольких гальванически не связан­ных выходных цепей сохраняются, как правило, контактные реле, ко­торые непрерывно совершенствуются.

В перспективе наиболее приемлемым следует признать оптималь­ное сочетание контактных и бесконтактных приборов.

  Классификация и основ­ные характеристики контактных реле.

 

По надежности действия реле подразделяются на I и низшие клас­сы надежности.

К реле I класса надежности относятся реле, у которых возврат якоря при выключении тока в обмотках обеспечивается с максималь­ной гарантией и осуществляется под действием собственного веса (силы тяжести). Реле I класса надежности имеют также следующие дополнительные свойства, обеспечивающие высокую надежность их действия:

Реле I класса надежности применяют во всех системах автоматики и телемеханики без дополнительного схемного контроля отпускания якоря.

У реле низших классов надежности возврат якоря при выключе­нии тока в обмотках реле может обеспечиваться как под действием собственного веса, так и под действием сил реакции контактных пру­жин. Эти реле, как правило, используют в схемах, не связанных непо­средственно с обеспечением безопасности движения поездов При использовании этих реле в ответственных цепях (дешифраторы автоблокировки и АЛС, путевые реле импульсных рельсо­вых цепей и др.) предусматривают обязательный схемный контроль притяжения и отпускания якоря реле при непрерывной импульсной работе. Если же эти реле работают в ответственных цепях с непрерыв­ным питанием, то применяют их дублирование (параллельное или последовательное включение обмоток реле и последовательное вклю­чение контактов).

 

По принципу действия реле подразделяют на следующие типы:

электромагнитные, в основу действия которых положено свойство электромагнита притягивать якорь и переключать связанные с ним контакты при протекании по обмотке тока. Электромагнитные реле получили наиболее широкое распространение в железнодорожной и промышленной автоматике и телемеханике;

индукционные (двухэлементные), работающие от взаимодей­ствия переменного магнитного потока одного элемента и тока, инду­цируемого в легком подвижном секторе переменным магнитным пото­ком другого элемента. Индукционные реле работают только от пере­менного тока;

электротермические, основанные на явлении расширения тел при нагревании; чаще всего в электротермических реле применяют биметаллические пластины, изгибающиеся при нагревании, и замыка­ющие контакты, связанные с биметаллическими пластинами.

 

По роду питающего тока реле подразделяются на реле постоянно­го, переменного и постоянно-переменного тока.

Реле постоянного тока подразделяются на нейтральные, поляризованные и комбинированные.

 

В зависимости от времени срабатывания реле делятся на быстродействующие — с временем срабатывания на притя­жение и отпускание до 0,03 с; нормальнодействующие — с временем срабатывания до 0,3 с; медленнодействующие — с временем срабатывания до 1,5 с; временные (реле выдержки вре­мени) — с временем срабатывания свыше 1,5 с.

 

Реле имеет два состояния — рабочее (возбужденное) и нерабочее (обесточенное). В рабочем состоянии реле возбуждено током, якорь его притянут, верхние, нормально разомкнутые (фронтовые) контак­ты замкнуты. В нерабочем положении через обмотку реле ток не про­текает (или он ниже тока отпускания), якорь находится в отпущен­ном положении, при этом замыкаются нижние, нормально замкнутые (тыловые), контакты.

Напряжение и ток, при которых якорь притягивается до упора и замыкаются фронтовые контакты, называют напряжением и током срабатывания, а напряжение и ток, при котором проис­ходит отпускание якоря,– напряжением (током) отпус­кания. Номинальное рабочее напряжение всегда несколько выше напряжения срабатывания (обычно в 1,5 раза).

Отношение напряжения (тока) отпускания Uo к напряжению (то­ку) срабатывания Ucp характеризует коэффициент возврата реле

или .

Для большинства реле, используемых в устройствах СЦБ, коэффи­циент возврата находится в пределах от 0,25 до 0,5.

 

В устройствах автоблокировки реле рассчитаны на номинальное рабочее напряжение 12 В, а в стан­ционных устройствах, как правило, — на 24 В.

 

На железных дорогах применяют реле трех видов: малогабарит­ные штепсельные реле (НМШ, АНШ, ОМШ, АШ), предшествующие им большие штепсельные реле (НШ, КШ) и наиболее ранние не­штепсельные реле, соединение контактов которых с внешними монтажными проводами осуществляется болтовыми соединениями (HP, KP и др.).

При проектировании и новом строительстве устройств предусмат­ривают использование малогабаритных штепсельных реле, которые изготовляются двух типов: в защитном кожухе (колпаке) для установки в релейных шкафах и на стативах, и открытые (без кожуха) для установки в релейных блоках электрической централи­зации.

 

Применяемые в устройствах железнодорожной автоматики и теле­механики реле имеют специальную маркировку (условное наименова­ние), состоящую из букв и цифр, занимающих определенное место в обозначении.

Первая буква или сочетание двух первых букв в обо­значении указывают на физический принцип действия реле: Н — ней­тральное, П — поляризованное, К — комбинированное, СК — само­удерживающее комбинированное, И — импульсное, ДС — индукци­онное переменного тока (двухэлементное секторное).

Буква М, стоя­щая на втором месте в условном обозначении штепсельных реле, ука­зывает на малогабаритное исполнение реле в отличие от ранее вы­пускавшихся больших штепсельных реле, в которых буква М отсут­ствует. Буква М отсутствует также у малогабаритных реле автобло­кировки, у которых буква А означает, что это реле автоблокировки малогабаритное.

У пусковых реле в условном наименовании имеется буква П, а у реле с выпрямителями — буква В.

Конструкция реле, которая характеризуется в основном видом электрического контактного соединения с другими приборами, обо­значается буквой Ш (штепсельное) или Р (реле с разборным бол­товым соединением).

Условные буквенные обозначения некоторых типов реле расшиф­ровываются следующим образом: НМШ — нейтральное малогаба­ритное штепсельное; НМПШ — нейтральное малогабаритное пуско­вое штепсельное; ИМВШ — импульсное малогабаритное штеп­сельное с выпрямителем; НШ — нейтральное штепсельное (боль­шое); НПР—нейтральное пусковое с болтовым соединением (не­штепсельное); ДСШ—двухэлементное секторное штепсельное.

У медленнодействующих на отпускание реле в обозначении имеет­ся дополнительная буква М, а у реле с замедлением на срабатывание, достигаемым с помощью термоэлемента, — буква Т, например НМШМ — нейтральное малогабаритное штепсельное медленнодей­ствующее; НМШТ — нейтральное малогабаритное штепсельное с термоэлементом; НРТ — нейтральное с болтовым соединением и тер­моэлементом.

 

Цифра после указанных букв характеризует контактную систему реле. У штепсельных реле цифра 1 указывает на наличие восьми кон­тактных групп на переключение 8 фт (ф — фронтовой, т — тыловой контакты); цифра 2 обозначает четырехконтактные реле (4 фт); цифра 3 указывает на наличие у реле двух контактных групп на пере­ключение и двух фронтовых контактов (2 фт, 2 ф); цифра 4 обознача­ет четыре полных тройника и четыре фронтовые контакта (4 фт, 4 ф); цифра 5 указывает на наличие двух тройников на переключение и двух тыловых контактов (2 фт, 2 т).

У реле типа HP цифра 1 указывает на наличие шести групп кон­тактов, цифра 2 и цифра 3 — на наличие двух групп контактов. У некоторых типов реле (ДСШ, ИМШ и др.) цифры, характеризую­щие контактную систему, не ставят.

Второе число, которое пишется через черточку, указывает на значение общего сопротивления обмо­ток постоянному току при последовательном включении обмотки (НМШ 1-1800, АНШ2-1600, НР2-2000).

Если обмотки включают раздельно или они имеют различное со­противление, то его значение указывают дробью: в числителе указывают сопротивление первой катушки (расположенной ближе к основанию у штепсельных реле и левой — у реле типа HP), а в зна­менателе — второй.

 

Полные номенклатуры некоторых типов реле расшифровываются так:

НМШ 1-1800 — нейтральное малогабаритное штепсельное реле с восемью контактными группами и общим сопротивлением обмоток, включенных последовательно, 1800 Ом;

НМПШ2-400 — нейтральное малогабаритное пусковое штепсельное реле с четырьмя контактными группами на переключение и сопротивлением обмоток 400 Ом;

НМПШ3-0,2/220 — нейтральное малогабаритное пусковое штепсель­ное реле с контактной системой 2 фт, 2 ф и сопротивлением обмоток 0,2 и 220 Ом;

НРВ1-250 — нейтральное с выпрямителем и болтовым соединением контактов, шестиконтактное, сопротивление обмоток по­стоянному току — 250 Ом.

Рассмотренная выше система обозначений выдерживается не для всех типов реле. Например, у огневых и аварийных реле первая буква указывает на назначение реле: ОМШ-40 — огневое малогабаритное штепсельное четырехконтактное с сопротивлением обмоток 40 Ом; АШ2-110/220 — аварийное штепсельное четырехконтактное на номи­нальное напряжение 110 и 220 В.

У нейтрального реле типа РЭЛ бук­вы в обозначении указывают: реле электромагнитное разработки Ле­нинградского электромеханического завода.

 

Реле в защитном кожухе изготовляют для работы при температу­ре окружающей среды от -50 до +60 °С и относительной влаж­ности до 90 % (при температуре +20 °С), а открытые реле, предназ­наченные для установки в релейных блоках, — при температуре окру­жающей среды от +5 до +35 °С и относительной влажности до 80% (при температуре +20°С).

 

Условные графические обозначения реле в электрических схе­мах

приведены в табл. 3.1.

Таблица 3.1

Вопросы для самоконтроля : Принцип действия реле и их классификация

1)   Поясните принцип действия прибора релейного действия (рис. 3.1).

2)   Объясните работу электромагнитного реле (рис. 3.2).

3)   Достоинства и недостатки контактных реле.

4)   Перечислите свойства, которыми должно обладать реле I класса надежности.

5)   Классификация реле по принципу действия.

6)   Классификация реле по времени срабатывания.

7)   Что понимают под величиной коэффициент возврата реле.

8)   Какая информация содержится в маркировке реле.

9)   Что означают первые буквы маркировки (Н, К, СК, П, ДС, А, И).

10)     О чем говорит наличие буквы «В» в маркировке.

11)     О чем говорит наличие буквы «М» в маркировке.

12)     Какую информацию несет цифровая маркировка.

13)     Обозначение обмоток реле в электрических схемах.

Элементы магнитных систем реле.

 

Магнитная система реле должна обеспечивать его срабатывание при малой потребляемой мощности и небольших размерах.

Якорь. При выключении тока должно обеспечиваться надежное отпускание якоря, поэтому для изготовления магнитных систем реле (сердечников, ярма и якоря) применяют магнитомягкие материалы: электротехнические стали и сплавы на основе железа с другими ме­талами: никелевые сплавы, кобальтовые сплавы и др.

Электротехнические стали являются наиболее дешевыми магнит­ными элементами, поэтому их широко применяют при изготовлении магнитных реле.

Эти материалы:

В магнитных элементах реле систем железнодорожной автомати­ки, обеспечивающих безопасность движения поездов, особенно неже­лательным является наличие остаточной индукции (намагничива­ния), так как это ухудшает стабильность параметров реле, снижает коэффициент возврата, увеличивает время отпускания якоря и, что особенно опасно, может привести к залипанию его.

Для исключения залипания якоря на нем устанавливают упорный штифт из немагнит­ного материала (обычно бронзы), гарантирующий минимальный воз­душный зазор между якорем и сердечником.

Магнитные элементы реле переменного тока изготовляют из от­дельных пластин электротехнических сталей толщиной 0,35—0,50 мм с повышенным содержанием кремния для снижения потерь на вихревые токи.

 Постоянные магниты поляризованных и комбинированных реле изготовляют из магнитотвердых материалов, обладающих высокой остаточной индукцией. Постоянные магниты обычно делают из сплавов железа с вольфрамом, хромом, кобальтом или никелем. Одним из лучших магнитных сплавов является альникосплав, содержащий алюминий, никель и кобальт.

Работа реле (притяжения, отпускания якоря и переключения контактов) во многом определяется тяговой и механической (на­грузочной) характеристиками реле.

 Тяговой характеристикой называют зависимость элек­тромагнитного усилия от воздушного зазора между якорем и сердеч­ником. Это усилие при уменьшении воздушного зазора и неизмен­ных намагничивающих силах непрерывно возрастает. При увеличении намагничивающих сил катушки электромагнитное усилие возрастает.

Механической характеристикой называют зависи­мость противодействующего усилия от размера зазора между якорем и сердечником. Механическая характеристика реле может быть полу­чена измерением усилия на якоре в различных его положениях (обмотка реле при измерениях должна быть выключена). Механи­ческая характеристика реле зависит от типа и конструкции реле, так как механические усилия различных реле отличаются.

Срабатывание реле будет обеспечено лишь в том случае, если тя­говая характеристика находится выше механической. Естественно, что реле отпустит якорь в том случае, если тяговая характеристика при намагничивающих силах отпускания будет ниже механической характеристики.

Вопросы для самоконтроля по пункту: Элементы магнитных систем

  1. Применение магнито-мягких материалов для изготовления реле.

  2. Применение магнито-твердых материалов для изготовления реле.

  3. Что называют тяговой характеристикой (рис. 3.3).

  4. Что называют механической характеристикой (рис. 3.3).

Контактная система реле

 Наиболее ответственными элементами, определяющими надеж­ность действия и срок службы, являются контакты, которые пе­реключают электрические цепи.

Особенно высокие требования предъ­являют к контактам реле, работающим в импульсном режиме: трансмиттерные и импульсные реле кодовой автоблокировки производят около 50 млн. переключений в год.

От надежности работы реле зависит действие автоблокировки, бесперебойность и без­опасность движения поездов, поэтому контакты реле должны удовлетворять ряду технических требований, чтобы обеспе­чивать надежное переключение электрических цепей.

Основными параметрами контактов являются:

 

Переходное сопротивление должно быть небольшим, поэтому контакты в большинстве случаев изготов­ляют из металлов, обладающих высокой электрической проводи­мостью (серебро, платина, золото, красная медь, а также некоторые сплавы и металлокерамические композиции).

Наилучшими свойства­ми обладает серебро: переходное сопротивление контактов из серебра сохраняется низким (не более 0,03 Ом) даже после окисления, по­скольку проводимость окиси серебра равна проводимости чистого серебра.

Контакты большей части реле железнодорожной автоматики и телемеханики, за исключением фронтовых контактов реле I класса надежности, изготовляют из серебра. Так как фронтовые контакты реле I класса надежности замыкают ответственные цепи, то должна исключаться возможность сваривания этих контактов, поэтому для изготовления фронтовых контактов применяют графит с серебряным наполнителем (графито-серебряная композиция), а общие и тыловые контакты делают серебряными. Переходное сопротивление контактов графит-серебро составляет не более 0,25 Ом. Графито-серебряные контакты необходимо проверять на равно­мерное вкрапление серебра. При скоплении серебра на поверхности не исключается возможность сваривания контактов.

Для изготовления усиленных контактов реле (трансмиттерных, аварийных, пусковых) применяют металлокерамические сплавы, в частности металлокерамический сплав марки СрКд86-14, содержа­щий 86% серебра и 14% кадмия. Переходное сопротивление таких контактов по техническим условиям должно быть не более 0,15 Ом.

Контакты в виде наклепок укрепляют на упругих пружинах. При срабатывании якорь реле перемещает подвижную пружину (об­щий контакт) до соприкосновения с неподвижной (фронтовой кон­такт). Поверхности соприкосновения (контакты) прижимаются друг к другу с определенным усилием, называемым контактным нажатием. Чтобы обеспечить длительную надежную работу кон­тактных пружин, они не должны иметь остаточных деформаций. С целью обеспечения надежности замыкания цепи некоторые кон­тактные пружины на концах разрезают, образуя два или три лепест­ка, на каждый из которых помещают контактирующий материал.

 

Для обеспечения надежного размыкания цепи между поверхно­стями контактов в разомкнутом состоянии делают зазор 1—5 мм. Для большинства реле железнодорожной автоматики и телемехани­ки он равен 1,3 мм.

Надежная работа контактов обеспечивается созданием соответ­ствующего контактного нажатия. Контактное нажатие фронтовых контактов для большей части реле должно быть не менее 0,3 Н, тыловых—0,15 Н. Для некоторых специальных типов реле преду­сматривают другие значения контактного нажатия.

Коммутируемая мощность (напря­жение, ток). Контактная система реле, как правило, рассчитана на переключе­ние электрических цепей постоянного тока при нагрузке 2 А напря­жением 24 В и переменного тока при нагрузке 0,5 А напряжением 220 В.

В ряде случаев требуется переключение более мощных цепей (рельсовые цепи, пусковые цепи стрелочных электроприводов, пере­ключение цепей питания).

Неблагоприятным режимом работы кон­тактов является переключение (разрыв) цепи постоянного тока, в особенности при индуктивной нагрузке, так как при этом создаются условия для возникновения и поддержания дуги. В цепях перемен­ного тока дуга гаснет при прохождении мгновенного значения тока через нуль, поэтому при прочих равных условиях те же контакты в це­пях переменного тока могут коммутировать в два-три раза большую мощность.

Усиленные контакты изготовляют из металлокерамических спла­вов, между контактами предусматривают увеличенное расстояние, а также обеспечивают большее контактное нажатие.

Контакты аварий­ных реле рассчитаны на переключение электрических цепей перемен­ного тока напряжением 220 В при токе до 15 А. Контакты некоторых пусковых реле, предназначенные для коммутирования больших токов, имеют магниты дугогашения (магнитное дутье), при этом используют принцип возникновения силы, действующей на проводник с током (дуга), расположенный в магнитном поле, создаваемом постоянным магнитом.

 

В соответствии с действующими техническими условиями на реле железнодорожной автоматики и телемеханики темпера­тура нагрева контактов допускается не более 100 °С по отно­шению к температуре окружающей среды. Повышение температуры контактов сверх допустимых норм приводит к увеличению со­противления контактного перехода, что в свою очередь вызывает дальнейший нагрев контактов. Таким образом, процесс может стать необратимым и приведет к разрушению контактов.

 В момент размыкания цепи, содержащей индуктивность, поверх­ность соприкосновения контактов резко уменьшается, что приводит к быстрому возрастанию сопротивления и материал в точках соприкосновения плавится, между расходящимися контактами появляется жидкий мостик, кото­рый разрывается при дальнейшем увеличении расстояния между контактами. После этого происходит газовый разряд, сопровождае­мый появлением искры. В мощных цепях может возникнуть дуга. Искрение вызывает эрозию контактов, которая связана с плавлением, распылением и переносом материала с контакта на контакт. Это при­водит к изменению формы контактов, их быстрому износу и возмож­ности сваривания. Кроме того, при искрении и дугообразовании про­исходит окисление контактов при высоких температурах, это приво­дит к образованию непроводящих пленок и к временному или устой­чивому нарушению контакта.

Степень эрозии контактов зависит от тока и напряжения ком­мутируемой цепи, индуктивности и емкости цепи, материала контак­тов, состояния их поверхности, вибрации, условий окружающей сре­ды и ряда других факторов: чем ниже твердость и температура плавления металла, тем при меньших значениях напряжения и тока начинается искрообра­зование. Для большинства реле при токе переключения 0,5—1 А на­пряжение, при котором создаются условия возникновения искры, сос­тавляют около 300 В. В цепях с индуктивной нагрузкой возможно сильное искрение контактов, вызываемое э.д.с. самоиндукции, стре­мящейся сохранить ток такого же значения, который протекал по це­пи до момента ее размыкания. При этом напряжение, возникающее при размыкании контакта, может в десятки и даже сотни раз превы­шать напряжение источника питания, и хотя его действие весьма кратковременно, оно вызывает искровой разряд между размыкаемы­ми контактами.

При использовании в схемах совместно с реле полупроводниковых приборов под действием импульсов перенапряжения может нару­шиться нормальное действие бесконтактных схем или произойти их повреждение (пробой).

Для уменьшения искры и увеличения срока службы контактов применяют специальные меры: искрогасящие схемы, особые кон­струкции контактов из тугоплавких металлов и сплавов, магниты дугогашения и др.

Наиболее широкое распространение получили искро­гасящие схемы, содержащие резисторы и конденсаторы, подключае­мые параллельно контакту или нагрузке (обмотке реле). Искрогасящий элемент выбирают с таким расчетом, чтобы напряжение на кон­тактах при размыкании не превышало напряжения зажигания искро­вого разряда Uз 300 В.

На схеме (рис. 3.4, а) контакт K шунтируется резистором r. В этой схеме ток, обусловленный э.д.с. самоиндукции, замыкается через ре­зистор r. Так как в первый момент после размыкания контакта K ток за счет э. д. с. самоиндукции равен , то максимальное напря­жение на контакте

где — напряжение источника питания;

R сопротивление нагрузки, например сопротивление обмотки включаемого реле.

Чтобы напряжение на контакте не превышало 300 В, сопротивле­ние искрогасящего резистора:

При отключении реле НМШ1-1800 от источника питания 24 В со­противление резистора r не должно превышать 22 500 Ом. Эффект искрогашения тем лучше, чем меньше r. Однако при малом r теряется управляемость контакта, так как при разомкнутом контакте ток про­ходит через управляемый прибор (обычно другое реле), который мо­жет остаться возбужденным при размыкании контакта. Кроме того, при разомкнутом контакте непроизвольно расходуется электроэнер­гия.

Рис. 3.4. Схемы искрогашения

 

В схеме (рис. 3.4, б) контакт шунтируется конденсатором С. При размыкании цепи энергия вместо пробоя воздушного промежутка расходуется на заряд конденсатора. Однако при очередном замыка­нии контакта конденсатор разряжается через малое сопротивление контакта, что ухудшает условия работы последнего, особенно при частых переключениях. При пробое конденсатора С теряется управ­ляемость схемы.

Эти недостатки схемы в основном устраняются включением по­следовательно с конденсатором резистора r (рис. 3.4, в). Такую схему применяют наиболее часто, причем в практических схемах емкость конденсатора С равна 0,25—4 мкФ, а сопротивление резисто­ра r — 30—200 Ом. При пробое конденсатора в данном случае также теряется управляемость схемы, поэтому в ответственных схемах ее не применяют.

В схеме (рис. 3.4, г) контакт шунтируется нелинейным резистором (варистором) r. При рабочем напряжении цепи сопротивление этого резистора велико и практически не оказывает влияния на режим ра­боты цепи. В момент размыкания контакта и увеличения напряжения за счет э.д.с. самоиндукции сопротивление нелинейного резистора резко уменьшается, ограничивая перенапряжение на контактах.

Эффект искрогашения достигается также включением рассмот­ренных искрогасительных цепей параллельно нагрузке (рис. 3.4, д, е. ж, з). В схеме (см. рис. 3.4, д) резистор подключают параллельно нагрузке (например, обмотке реле). В момент размыкания контакта К ток, обусловленный э.д.с. самоиндукции, замыкается через резис­тор r. Чтобы напряжение на контакте не превышало 300 В, сопро­тивление резистора

Подключение резистора r параллельно нагрузке повышает потреб­ление энергии от источника питания. Однако, если резистор по срав­нению с нагрузкой имеет высокое сопротивление, то этот недостаток не играет существенной роли. В тех случаях, когда нежелательно иметь дополнительный расход энергии, последовательно с резистором включают диод VD (рис. 3.4, и). Эта схема практически является равноценной схеме рис. 3.4, з. Диод включают по отношению к источ­нику питания во встречном направлении, его обратное сопротивление велико и потерь энергии почти нет. При размыкании контакта воз­никающая э.д.с. самоиндукции имеет обратное направление, ток за­мыкается через диод. Для исключения короткого замыкания при пробое диода последовательно с ним включают резистор. Включение диода для искрогашения вызывает замедление на отпус­кание управляемого реле, поэтому применение диода недопустимо, если появление замедления изменяет режим работы схемы.

При включении резистора (см. рис. 3.3, д) замедление на отпус­кание якоря также увеличивается, хотя и в меньшей степени. При с замедлением, обусловленным подключением резистора, можно практически не считаться. На временные параметры управ­ляемого прибора (реле) оказывают влияние в той или иной степени и схе­мы искрогашения (см. рис. 3.4, е, ж, з).

Вопросы для самоконтроля по пункту: Контактная система реле

 

1)   Основные параметры контактов.

2)   Материалы, из которых изготавливаются контакты реле, обоснуйте выбор этих материалов.

3)   Перечислите факторы, приводящие к разрушению контактов, поясните причину их появления.

4)   Перечислите способы увеличения срока службы контактов.

5)  Опишите принцип действия искрогасительных схем (рис. 3.4).

Схемы искрогашения



Вы можете оставить комментарии от своего имени, через сервисы представленные ниже:

Данную страницу никто не комментировал. Вы можете стать первым.

Ваше имя:

Комментарий:
Введите символы или вычислите пример: *
captcha
Обновить